I dont know how to do this so if you could explain the work also that would be great

Answer:
[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{m ∠EFG = 96°}}}}}[/tex]
[tex] \boxed{ \bold{ \huge{ \boxed{ \sf{m∠GFH = 84°}}}}}[/tex]
Step-by-step explanation:
Sum of linear pair add to 180°
Let's create an equation and solve for n
[tex] \sf{m∠EFG + m∠GFH = 180 °\: }[/tex]
[tex] \longrightarrow{ \sf{5n + 16 + 4n + 20}} = 180°[/tex]
[tex] \longrightarrow{ \sf{9n + 36 = 180°}}[/tex]
[tex] \longrightarrow{ \sf{9n = 180° - 36}}[/tex]
[tex] \longrightarrow{ \sf{9n = 144}}[/tex]
[tex] \longrightarrow{ \sf{ \frac{9n}{9} = \frac{144}{9}}} [/tex]
[tex] \longrightarrow{ \sf{n = 16}}[/tex]
Replacing / Substituting the value of n in 5n + 16 in order to find the value of m ∠ EFG
[tex] \sf{m ∠EFG = 5n + 16 = 5 \times 16 + 16 = 96}[/tex]
Replacing / Substituting the value of n in 4n + 20 in order to find the value of m ∠GFH
[tex] \sf{m ∠GFH = 4n + 20 = 4 \times 16 + 20 = 84}[/tex]
Hope I helped!
Best regards! :D