Respuesta :

Answer:

Vertex: (-1,9) is true

Sample Points: (2,4) is not true

Step-by-step explanation:

Given

[tex]Vertex: (-1,9)[/tex]

[tex]Sample\ Points: (2,4)[/tex]

Required

Determine if the vertex and sample points exist for [tex]y= -2(x+1)\²+9[/tex]

Solving for the vertex:

[tex]y= -2(x+1)\²+9[/tex]

Writing the given equation in the form:

[tex]y = ax^2 + bx + c[/tex]

Expand the bracket

[tex]y= -2(x+1)(x+1)+9[/tex]

Open Bracket

[tex]y= -2(x+1)(x+1)+9[/tex]

[tex]y = -2(x^2 + 2x + 1) + 9[/tex]

Open bracket

[tex]y = -2x^2 - 4x -2 + 9[/tex]

[tex]y = -2x^2 - 4x +7[/tex]

Solve for x using:

[tex]x = \frac{-b}{2a}[/tex]

Where [tex]a = -2[/tex]; [tex]b = -4;[/tex]

So:

[tex]x = \frac{-(-4)}{2 * (-2)}[/tex]

[tex]x = \frac{4}{-4}[/tex]

[tex]x = -1[/tex]

Substitute -1 for x in [tex]y = -2x^2 - 4x +7[/tex]

[tex]y = -2(-1)^2 -4(-1) + 7[/tex]

Simplify all brackets

[tex]y = -2(1) + 4 + 7[/tex]

[tex]y = -2 + 4 + 7[/tex]

[tex]y = 9[/tex]

Hence;

The vertex (x,y) is (-1,9)

This is true

Checking sample points: [tex](2,4)[/tex]

In this case; [tex]x = 2[/tex] and [tex]y = 4[/tex]

Substitute [tex]x = 2[/tex] and [tex]y = 4[/tex] in [tex]y= -2(x+1)\²+9[/tex]

[tex]4 = -2(2 + 1)^2 + 9[/tex]

[tex]4 = -2(3)^2 + 9[/tex]

[tex]4 = -2 * 9 + 9[/tex]

[tex]4 = -18 + 9[/tex]

[tex]4 \neq -9[/tex]

Hence;

This sample points [tex](2,4)[/tex] does not exist