Given △ B O Y has been transformed under the translation: T − 3 , 6 to form image at B′ ( − 5,2 ) , O′ ( 3,0 ) , Y′ ( 10,7 ) . Find the coordinates of the preimage.

Respuesta :

Answer:

[tex]B(x,y) = (-2,-4)[/tex]

[tex]O(x,y) = (6,-6)[/tex]

[tex]Y(x,y) = (13,1)[/tex]

Step-by-step explanation:

Given

[tex]Translation: (-3,6)[/tex]

[tex]B': (-5,2)[/tex]

[tex]O':(3,0)[/tex]

[tex]Y': (10,7)[/tex]

Required

Determine the coordinates of B, O and Y

Recall that the given translation is:

[tex](x,y) = (-3,6)[/tex]

Calculating the x coordinates of B:

[tex]B_x + x = B'_x[/tex]

Where [tex]B': (-5,2)[/tex]

This gives

[tex]B_x -3 = -5[/tex]

[tex]B_x = -5 + 3[/tex]

[tex]B_x = -2[/tex]

Calculating the y coordinates of B:

[tex]B_y + y = B'_y[/tex]

This gives

[tex]B_y + 6 = 2[/tex]

[tex]B_y = 2 - 6[/tex]

[tex]B_y = -4[/tex]

Hence:

[tex]B(x,y) = (-2,-4)[/tex]

Calculating the x coordinates of O:

[tex]O_x + x = O'_x[/tex]

Where [tex]O':(3,0)[/tex]

This gives

[tex]O_x -3 = 3[/tex]

[tex]O_x = 3 + 3[/tex]

[tex]O_x = 6[/tex]

Calculating the y coordinates of O:

[tex]O_y + y = O'_y[/tex]

This gives

[tex]O_y + 6 = 0[/tex]

[tex]O_y = 0 - 6[/tex]

[tex]O_y = - 6[/tex]

Hence:

[tex]O(x,y) = (6,-6)[/tex]

Calculating the x coordinates of Y:

[tex]Y_x + x = Y'_x[/tex]

Where [tex]Y': (10,7)[/tex]

This gives

[tex]Y_x -3 = 10[/tex]

[tex]Y_x = 10 + 3[/tex]

[tex]Y_x = 13[/tex]

Calculating the y coordinates of Y:

[tex]Y_y + y = Y'_y[/tex]

This gives

[tex]Y_y + 6 = 7[/tex]

[tex]Y_y = 7 - 6[/tex]

[tex]Y_y = 1[/tex]

Hence:

[tex]Y(x,y) = (13,1)[/tex]