Answer:
The value of [tex]p[/tex] :
[tex]p = \frac{-8q}{5} + 3[/tex]
Step-by-step explanation:
-Solve for [tex]p[/tex] :
[tex]-15 = -5p + 8q[/tex]
-First, switch the equation:
[tex]-5p + 8q = -15[/tex]
-Subtract both sides by [tex]8q[/tex] to make it in standard form:
[tex]-5p + 8q - 8q = -15 - 8q[/tex]
[tex]-5p = - 8q -15[/tex]
-Divide both sides by [tex]5p[/tex] :
[tex]\frac{-5p}{-5} = \frac{-8q - 15}{-5}[/tex]
[tex]p = \frac{-8q - 15}{-5}[/tex]
-Divide both [tex]-8q[/tex] and [tex]-15[/tex] by [tex]-5[/tex] :
[tex]p = \frac{-8q - 15}{-5}[/tex]
[tex]p = \frac{-8q}{5} + 3[/tex]
-Result:
[tex]p = \frac{-8q}{5} + 3[/tex]