contestada

For each linear equation write the slope of a line perpendicular to the given line. 1) y=-2/7x + 5 2) 3x + 5y = –15​

Respuesta :

Hey there! I'm happy to help!

The slope of a perpendicular line is always the negative reciprocal of the original.

QUESTION 1

For the first one, we have a slope of -2/7. To find the reciprocal you flip the numerator and denominator, giving us -7/2. Then, we want the negative reciprocal, so since two negatives make a positive our perpendicular slope is 7/2.

QUESTION 2

Let's first rearrange our equation to be in slope intercept form.

3x+5y=-15

Subtract 3x from both sides.

5y=-3x-15

Divide both sides by 5.

y=-3/5x-3

First we find the reciprocal of -3/5, which is -5/3. This is the normal reciprocal, but we want the negative one, and since two negatives makes a positive, our slope is 5/3.

Have a wonderful day! :D