Respuesta :

Answer:

x = abc/  (a+b)

Step-by-step explanation:

x/a + x/b = c

Multiply by ab to get rid of the fractions

ab(x/a + x/b) = abc

bx + ax = abc

Factor out an x

x( b+a) = abc

Divide each side by (a+b)

x ( a+b)/ (a+b) = abc/  (a+b)

x = abc/  (a+b)

Answer:

[tex]x=\frac{abc}{b+a}[/tex]

Step-by-step explanation:

So we have:

[tex]\frac{x}{a}+\frac{x}{b}=c[/tex]

And we want to solve for x.

To do so, let's remove the fractions. We can multiply both sides by the LCM of a and b, which is ab. So:

[tex](ab)\frac{x}{a}+\frac{x}{b}=c(ab)[/tex]

On the left, distribute. On the right, multiply:

[tex]\frac{x(ab)}{a}+\frac{x(ab)}{b}=abc[/tex]

Simplify:

[tex]xb+xa=abc[/tex]

Now, factor out an x on the left:

[tex]x(b+a)=abc[/tex]

Divide both sides by (b+a):

[tex]x=\frac{abc}{b+a}[/tex]

And we're done!