Solve the equation x=5/3 pi r ^3
A.
B
C
D?

Answer:
B (3x / ( 5pi)) ^ 1/3 = r
Step-by-step explanation:
x=5/3 pi r ^3
Multiply each side by 3/5
3/5 x= pi r ^3
Divide each side by pi
3x / ( 5pi) = pi r^3 /pi
3x / ( 5pi) = r^3
Take the cube root of each side
(3x / ( 5pi)) ^ 1/3 = r^3 ^ 1/3
(3x / ( 5pi)) ^ 1/3 = r
Here, we just have to express r in terms of x when we are provided with the relation between x and r. We have to flip and sent it to the Right hand side.
We have,
Solving it further,
[tex] \large{ \longrightarrow{ \rm{x = \frac{5}{3} \pi {r}^{3} }}}[/tex]
Taking 5/3 to the other side by dividing it,
[tex] \large{ \longrightarrow{ \rm{ \frac{3x}{5} = \pi {r}^{3} }}}[/tex]
Now, taking π to the other side by dividing it,
[tex] \large{ \longrightarrow{ \rm{ \frac{3x}{5\pi} = {r}^{3} }}}[/tex]
Cube rooting LHS to get r
[tex]\large{ \longrightarrow{ \rm{ \sqrt[3]{ \frac{3x}{5\pi} } = r}}}[/tex]
Flipping it,
[tex]\large{ \longrightarrow{ \rm{r = \sqrt[3]{ \frac{3x}{5\pi} } }}}[/tex]
So, the correct option:
[tex] \huge{ \boxed{ \bf{ \red{Option \: B}}}}[/tex]
━━━━━━━━━━━━━━━━━━━━