Respuesta :

Answer:

1) [tex]f'(x)= \frac{3}{2\sqrt{3x-5}}[/tex]

2) [tex]y=\frac{3}{4}x-\frac{1}{4}[/tex]

Step-by-step explanation:

So we have the function:

1)

And we want to find its derivative using the limit definition:

[tex]\lim_{h \to 0} \frac{f(x+h)-f(x)}{h}[/tex]

So, let's do so:

[tex]\lim_{h \to 0} \frac{\sqrt{3(x+h)-5}-\sqrt{3x-5}}{h}[/tex]

Simplify the first square root:

[tex]\lim_{h \to 0} \frac{\sqrt{3x+3h-5}-\sqrt{3x-5}}{h}[/tex]

Now, let's remove the square root by multiplying by its conjugate. So:

[tex]\lim_{h \to 0} \frac{\sqrt{3x+3h-5}-\sqrt{3x-5}}{h}\cdot (\frac{ \sqrt{3x+3h-5}+\sqrt{3x-5} }{\sqrt{3x+3h-5}+\sqrt{3x-5} })[/tex]

In the numerator, difference of two squares. In the denominator, multiply:

[tex]\lim_{h \to 0} \frac{(3x+3h-5)-(3x-5)}{h(\sqrt{3x+3h-5}+\sqrt{3x-5})}[/tex]

Distribute the numerator:

[tex]\lim_{h \to 0} \frac{(3x+3h-5)-3x+5}{h(\sqrt{3x+3h-5}+\sqrt{3x-5})}[/tex]

Simplify:

[tex]\lim_{h \to 0} \frac{3h}{h(\sqrt{3x+3h-5}+\sqrt{3x-5})}[/tex]

Cancel out the h:

[tex]\lim_{h \to 0} \frac{3}{\sqrt{3x+3h-5}+\sqrt{3x-5}}[/tex]

Direct substitution:

[tex]= \frac{3}{\sqrt{3x+3(0)-5}+\sqrt{3x-5}}[/tex]

Simplify:

[tex]= \frac{3}{\sqrt{3x-5}+\sqrt{3x-5}}[/tex]

Combine like terms:

[tex]= \frac{3}{2\sqrt{3x-5}}[/tex]

Therefore:

[tex]f'(x)= \frac{3}{2\sqrt{3x-5}}[/tex]

Your answer is indeed correct!

2)

Now, let's find the equation of the tangent line to the graph at x=3.

Remember what the derivative gives us. The derivative tells us the slope of the tangent line to a graph at a certain point. So, let's substitute 3 into f'(x) to find the slope of our tangent line:

[tex]f'(3)= \frac{3}{2\sqrt{3(3)-5}}[/tex]

Multiply and subtract:

[tex]f'(3)= \frac{3}{2\sqrt{9-5}}\\f'(3)= \frac{3}{2\sqrt{4}}[/tex]

Simplify:

[tex]f'(3)= \frac{3}{2(2)}\\f'(3)= \frac{3}{4}[/tex]

Therefore, the slope of our tangent line is 3/4.

Now, let's find the equation of the line using the point-slope form. So, we need to point at x=3 of the original graph. So, substitute 3 into the original function:

[tex]f(3)=\sqrt{3(3)-5}[/tex]

Multiply, subtract, and simplify:

[tex]f(3)=\sqrt{9-5}\\f(3)=\sqrt{4}\\f(3)=2[/tex]

Therefore, our point is (3,2).

Now, we can use the point-slope form, where:

[tex]y-y_1=m(x-x_1)[/tex]

Let (3,2) be (x₁, y₁) and substitute 3/4 for m. Therefore:

[tex]y-2=\frac{3}{4}(x-3)[/tex]

Distribute:

[tex]y-2=\frac{3}{4}x-\frac{9}{4}[/tex]

Add 2 to both sides:

[tex]y=\frac{3}{4}x-\frac{1}{4}[/tex]

And we're done!