Respuesta :
[tex] \bf \underline{ \underline{Given : }}[/tex]
- Initial velocity,u = 0 m/s
- Final velocity,v = 60 m/s
- Time taken,t = 5 min = 5 × 60 sec = 300 seconds
[tex] \bf \underline{ \underline{
To \: be \: calculated : }}[/tex]
Calculate the acceleration ( a ) and distance (s ) covered by the jeep.
[tex] \bf \underline{ \underline{Solution : }}[/tex]
We will first calculate the acceleration of the jeep.
CASE 1 :
By Using first equation of motion ,
[tex] \sf \: v = u + at[/tex]
[tex] \sf \star \: Substituting \: the \: values...[/tex]
[tex] \sf\rightarrow \: 60 = 0 + a \times 300[/tex]
[tex] \sf \rightarrow \: 60 = 300a[/tex]
[tex]\sf \rightarrow \: 300a = 60[/tex]
[tex]\sf \rightarrow \: a = \cancel \dfrac{300}{6} [/tex]
[tex]\sf \rightarrow \: a = 50 \: m {s}^{ - 2} [/tex]
Thus,the acceleration of the jeep is 50 m/s².
Now, Let us calculate the distance travelled by the jeep.
CASE 2 :
By Using third equation of motion ,
[tex] \sf {v}^{2} = {u}^{2} + 2as[/tex]
[tex] \sf \star \: Substituting \: the \: values...[/tex]
[tex]\sf \rightarrow \: {60}^{2} = {0}^{2} + 2 \times 50 \times s[/tex]
[tex]\sf \rightarrow \: 3600 = 100s[/tex]
[tex] \sf \rightarrow \: 100s = 3600[/tex]
[tex]\sf \rightarrow \: s = \cancel\dfrac{3600}{100} [/tex]
[tex]\sf \rightarrow \: s = 36 \: m[/tex]
Thus,the distance covered by the jeep is 36 m .