hello if you could kindly pls help

Answer:
A=4x^2+24x
Step-by-step explanation:
Plug 8x in for base and x+ 6 in for Hight
A=1/2(8x)(x+6)
Now multiply 8x and x+6
(8x)(x+6)=8x^2+48x
Dived by 2
(8x^2+48x)/2
A=4x^2+24x
Hope this helps!
: )
[tex] \boxed{ \boxed{ \bf{Given : }}}[/tex]
[tex] \boxed{ \boxed{ \bf{To \: be \: calculated : }}}[/tex]
Calculate the area of the triangle in term of x.
[tex] \boxed{ \boxed{ \bf{Solution : }}}[/tex]
We know that,
[tex] \sf \: Area \: of \: triangle = \dfrac{1}{2} \times b \times h[/tex]
[tex] \sf \rightarrow \: Area \: of \: triangle \: = \dfrac{1}{2} \times 8x \times (x + 6)[/tex]
[tex]\sf \rightarrow \: Area \: of \: triangle = \dfrac{8 {x}^{2} + 48x }{2} [/tex]
[tex]\sf \rightarrow \: Area \: of \: triangle = \dfrac{ \cancel2(4 {x}^{2} + 24x) }{ \cancel2} [/tex]
[tex]\sf \rightarrow \: Area \: of \: triangle = 4 {x}^{2} + 24x [/tex]
Hence,the area of triangle is 4x² + 24x units.