Respuesta :

Answer:

A=4x^2+24x

Step-by-step explanation:

Plug 8x in for base and x+ 6 in for Hight

A=1/2(8x)(x+6)

Now multiply 8x and x+6

(8x)(x+6)=8x^2+48x

Dived by 2

(8x^2+48x)/2

A=4x^2+24x

Hope this helps!

: )

[tex] \boxed{ \boxed{ \bf{Given : }}}[/tex]

  • Base,b = 8x

  • Height,h = x + 6

[tex] \boxed{ \boxed{ \bf{To \: be \: calculated : }}}[/tex]

Calculate the area of the triangle in term of x.

[tex] \boxed{ \boxed{ \bf{Solution : }}}[/tex]

We know that,

[tex] \sf \: Area \: of \: triangle = \dfrac{1}{2} \times b \times h[/tex]

[tex] \sf \rightarrow \: Area \: of \: triangle \: = \dfrac{1}{2} \times 8x \times (x + 6)[/tex]

[tex]\sf \rightarrow \: Area \: of \: triangle = \dfrac{8 {x}^{2} + 48x }{2} [/tex]

[tex]\sf \rightarrow \: Area \: of \: triangle = \dfrac{ \cancel2(4 {x}^{2} + 24x) }{ \cancel2} [/tex]

[tex]\sf \rightarrow \: Area \: of \: triangle = 4 {x}^{2} + 24x [/tex]

Hence,the area of triangle is 4x² + 24x units.