Answer: a. [tex]v=\dfrac{2}{3}t[/tex] and b. [tex]t=\dfrac{3}{2}v[/tex].
Step-by-step explanation:
Let as consider,
Volume (in gallons) of water in the container = v
The number of minutes = t
(a)
From the given graph it is clear that the line passing through the points (0,0) and (3,2). So, the equation of line is
[tex]v-v_1=\dfrac{v_2-v_1}{t_2-t_1}(t-t_1)[/tex]
[tex]v-0=\dfrac{2-0}{3-0}(t-0)[/tex]
[tex]v=\dfrac{2}{3}t[/tex]
Therefore, the required formula is [tex]v=\dfrac{2}{3}t[/tex].
(b)
We have,
[tex]v=\dfrac{2}{3}t[/tex]
Multiply both sides by 3/2.
[tex]v\times \dfrac{3}{2}=\dfrac{2}{3}t\times \dfrac{3}{2}[/tex]
[tex]\dfrac{3}{2}v=t[/tex]
[tex]t=\dfrac{3}{2}v[/tex]
Therefore, the required formula is [tex]t=\dfrac{3}{2}v[/tex].