Respuesta :

Answer:

d

Step-by-step explanation:

Given y is directly proportional to x² then the equation relating them is

y = kx² ← k is the constant of proportion

To find k use the condition y = [tex]\frac{1}{8}[/tex] when x = [tex]\frac{1}{2}[/tex], then

[tex]\frac{1}{8}[/tex] = k([tex]\frac{1}{2}[/tex] )² = [tex]\frac{1}{4}[/tex] k ( multiply both sides by 8 )

1 = 2k ( divide both sides by 2 )

k = [tex]\frac{1}{2}[/tex]

y = [tex]\frac{1}{2}[/tex] x² ← equation of proportion

When y = [tex]\frac{9}{2}[/tex] , then

[tex]\frac{9}{2}[/tex] = [tex]\frac{1}{2}[/tex] x² ( multiply both sides by 2 )

9 = x² ( take the square root of both sides )

x = ± [tex]\sqrt{9}[/tex] = ± 3

with positive value x = 3 → d