Respuesta :
Answer:
[tex](10c^6d^{-5})\times (2c^{-5}d^4)[/tex]=[tex]\dfrac{20c}{d}[/tex]
Step-by-step explanation:
The given expression is :
[tex](10c^6d^{-5})\times (2c^{-5}d^4)[/tex]
We need to find the equivalent expression for the given expression
We know that, [tex]x^ax^b=x^{a+b}[/tex]
⇒[tex]c^6c^{-5}=c^{6-5}=c\\\\d^{-5}d^4=d^{-5+4}=\dfrac{1}{d}[/tex]
So,
[tex](10c^6d^{-5})\times (2c^{-5}d^4)=20\times c\times \dfrac{1}{d}\\\\=\dfrac{20c}{d}[/tex]
Hence, the correct option is (a) i.e. [tex]\dfrac{20c}{d}[/tex].