Respuesta :

Answer:

The inverse of f(x) is

 [tex]f^{-1} (x) = \frac{2 x+3}{4}[/tex]

Step-by-step explanation:

Explanation:-

Given  [tex]f(x) = \frac{4 x-3}{2}[/tex]

Inverse of f(x)

f(x) is a one-one  function

let f(x₁) and  f(x₂) be two functions are

     [tex]f(x_{1} ) = \frac{4 x_{1} -3}{2}[/tex]

    [tex]f(x_{2} ) = \frac{4 x_{2} -3}{2}[/tex]

 ⇒    [tex]\frac{4 x_{1} -3}{2} = \frac{4 x_{2} -3}{2}[/tex]

  ⇒  4 x₁ - 3 = 4 x₂ - 3

  ⇒  4 x₁ = 4 x₂

  ⇒  x₁ = x₂

Given function is one-one function

                   y = f(x) = [tex]\frac{4 x-3}{2}[/tex]

              ⇒ 2 y = 4 x - 3

             ⇒  4 x =  2 y + 3

            ⇒   [tex]x = \frac{2 y + 3}{4}[/tex]

           ⇒ f⁻¹(x)  [tex]= \frac{2 y + 3}{4}[/tex]

Given function f(x) is onto function

Therefore f(x) is one-one and onto function

           [tex]f^{-1} (x) = \frac{2 x+3}{4}[/tex]