Respuesta :
Answer:
The answer is "[tex]3x^3 + 6x^2 + 8x + 24 + \frac{47}{(x - 2)}[/tex]"
Step-by-step explanation:
Given value:
[tex](3x^4 - 4x^2 + 8x - 1) \div (x -2)\\\\[/tex]
Find:
quotient =?
please find the attachment.

The quotient of (3x⁴ - 4x² + 8x - 1) ÷ (x - 2) is 3x³ + 6x² + 8x + 24
It can be expressed as 3x³ + 6x² + 8x + 24 + 47 / x - 2
Quotients
Quotients is the number obtained by dividing one number by another.
Therefore,
(3x⁴ - 4x² + 8x - 1) ÷ (x - 2)
Using synthetic division:
(3x⁴ - 4x² + 8x - 1) / (x - 2) = 3x³ + 6x² + 8x + 24 remainder 47
3x⁴ - 4x² + 8x - 1 → Dividend
x - 2 → Divisor
3x³ + 6x² + 8x + 24 → Quotient
47 → Remainder
Therefore, the quotient of (3x⁴ - 4x² + 8x - 1) ÷ (x - 2) is 3x³ + 6x² + 8x + 24
learn more on quotients: https://brainly.com/question/13515262?referrer=searchResults
