What is the quotient of (3x4 – 4x2 + 8x – 1) ÷ (x – 2)?

3x3 + 6x2 + 8x + 24 – StartFraction 47 Over x minus 2 EndFraction

3x3 + 6x2 + 8x + 24 + StartFraction 47 Over 3 x Superscript 4 Baseline minus 4 x squared + 8 x minus 1 EndFraction

3x3 + 6x2 + 8x + 24 + StartFraction 47 Over x minus 2 EndFraction

3x3 + 6x2 + 8x + 24 – StartFraction 47 Over 3 x Superscript 4 Baseline minus 4 x squared + 8 x minus 1 EndFraction

Respuesta :

Answer:

The answer is "[tex]3x^3 + 6x^2 + 8x + 24 + \frac{47}{(x - 2)}[/tex]"

Step-by-step explanation:

Given value:

[tex](3x^4 - 4x^2 + 8x - 1) \div (x -2)\\\\[/tex]

Find:

quotient =?

please find the attachment.

Ver imagen codiepienagoya

The quotient of (3x⁴ - 4x² + 8x - 1) ÷ (x - 2) is 3x³ + 6x² + 8x + 24

It can be expressed as 3x³ + 6x² + 8x + 24  + 47 / x - 2

Quotients

Quotients is the number obtained by dividing one number by another.  

Therefore,

(3x⁴ - 4x² + 8x - 1) ÷ (x - 2)

Using synthetic division:

(3x⁴ - 4x² + 8x - 1) / (x - 2)  = 3x³ + 6x² + 8x + 24 remainder 47

3x⁴ - 4x² + 8x - 1 → Dividend

x - 2 → Divisor

3x³ + 6x² + 8x + 24 → Quotient

47 → Remainder

Therefore, the quotient of (3x⁴ - 4x² + 8x - 1) ÷ (x - 2) is 3x³ + 6x² + 8x + 24

learn more on quotients: https://brainly.com/question/13515262?referrer=searchResults

Ver imagen vintechnology