Respuesta :

Answer:

56

Step-by-step explanation:

Answer:

The answer is

[tex]43 \sqrt{10} [/tex]

Step-by-step explanation:

[tex]5 \sqrt{490} + 4 \sqrt{40} [/tex]

First of all we must make sure that the surds have equal roots

For 5√490

[tex]5 \sqrt{490} = 5 \sqrt{49 \times 10 } \\ = 5 \times \sqrt{49} \times \sqrt{10} \\ = 5 \times 7 \sqrt{10} \\ = 35 \sqrt{10} [/tex]

For 4√40

[tex]4 \sqrt{40} = 4 \times \sqrt{4 \times 10} \\ = 4 \times \sqrt{4} \times \sqrt{10} \\ = 4 \times 2 \sqrt{10} \\ = 8 \sqrt{10} [/tex]

So we have

[tex]35 \sqrt{10} + 8 \sqrt{10} [/tex]

Using the rules of surds simplify the expression

That's

[tex]a \sqrt{x} + b \sqrt{x} = (a + b) \sqrt{x} [/tex]

So we have

[tex]35 \sqrt{10} + 8 \sqrt{10} = (35 + 8) \sqrt{10} \\ [/tex]

We have the final answer as

[tex]43 \sqrt{10} [/tex]

Hope this helps you