Respuesta :

Answer:

[tex]x = 23[/tex]

[tex]ECH = 28[/tex]

[tex]HCD = 62[/tex]

[tex]GCF = 28[/tex]

[tex]ECG = 152[/tex]

[tex]GCD = 118[/tex]

Step-by-step explanation:

Given

[tex]ECH = x + 5[/tex]

[tex]HCD = 3x - 7[/tex]

Solving (a): The value of x

Since CD is perpendicular to EF, then the following relationship exists

[tex]ECH + HCD = ECD[/tex]

Where ECD = 90° and DCF = 90°

Substitute values for ECH, HCD and ECD

[tex]x + 5 + 3x - 7 = 90[/tex]

Collect like terms

[tex]x + 3x = 90 + 7 - 5[/tex]

[tex]4x = 92[/tex]

Divide both sides by 4

[tex]x = 23[/tex]

Solving (b): The value of ECH

Given that

[tex]ECH = x + 5[/tex]

Substitute 23 for x

[tex]ECH = 23 + 5[/tex]

[tex]ECH = 28[/tex]

Solving (c): The value of HCD

Given that

[tex]HCD = 3x - 7[/tex]

Substitute 23 for x

[tex]HCD = 3 * 23 - 7[/tex]

[tex]HCD = 69 - 7[/tex]

[tex]HCD = 62[/tex]

Solving (d): Solving GCF

GCF and ECH are opposites

Hence,

[tex]GCF = ECH = 28[/tex]

Solving (e): The value of ECG

[tex]ECG + ECH = 180[/tex]

Make ECG the subject of formula

[tex]ECG = 180 - ECH[/tex]

Substitute 28 for ECH

[tex]ECG = 180 - 28[/tex]

[tex]ECG = 152[/tex]

Solving (f): The value of GCD

[tex]GCD = GCF + DCF[/tex]

Recall that DCF = 90 and GCF = 28

[tex]GCD = 90 + 28[/tex]

[tex]GCD = 118[/tex]