Respuesta :

Answer:

[tex]y = 6x + C[/tex]

Step-by-step explanation:

Given the system of equations

dx/dt = 6x − y  ............. 1

dy/dt = 36x − 6y ............ 2

Divide equation 2 by 1;

[tex]\dfrac{dy/dt}{dx/dt} = \dfrac{36x-6y}{6x-y} \\\\\dfrac{dy/dt}{dx/dt} = \dfrac{6(6x-y)}{6x-y}\\ \\\dfrac{dy/dt}{dx/dt} = 6\\\\\dfrac{dy}{dt}* \dfrac{dt}{dx} = 6\\\dfrac{dy}{dx} = 6[/tex]

cross multiply

[tex]dy = 6dx\\[/tex]

integrate both sides of the expression

[tex]\int\limits {dy} = \int\limits {6} \, dx \\\\y = 6x + C[/tex]

Hence the general solution to the system of equation is [tex]y = 6x + C[/tex]