Answer:
[tex]k (3x^3 + 8x - 2) = 12x^3 + 32x - 8[/tex]
Step-by-step explanation:
Set up the composite result function.
k (F (x))
Evaluate k (F (x)) by substituting in the value of into.
[tex]k (3x^3 + 8x - 2) = 4 (3x^3 + 8x - 2)[/tex]
Apply the distributive property
[tex]k (3x^3 + 8x - 2) = 4 (3x^3) + 4 (8x) + 4(-2)[/tex]
Simplify
Multiply 3 by 4.
[tex]k (3x^3 + 8x - 2) = 12x^3 + 4 (8x) + 4(-2)[/tex]
Multiply 8 by 4.
[tex]k (3x^3 + 8x - 2) = 12x^3 + 32x + 4(-2)[/tex]
Multiply 4 by -2.
[tex]k (3x^3 + 8x - 2) = 12x^3 + 32x - 8[/tex]