Respuesta :

Answer:

[tex]k (3x^3 + 8x - 2) = 12x^3 + 32x - 8[/tex]

Step-by-step explanation:

Set up the composite result function.

k (F (x))

Evaluate k (F (x)) by substituting in the value of into.

[tex]k (3x^3 + 8x - 2) = 4 (3x^3 + 8x - 2)[/tex]

Apply the distributive property

[tex]k (3x^3 + 8x - 2) = 4 (3x^3) + 4 (8x) + 4(-2)[/tex]

Simplify

       Multiply 3 by 4.

            [tex]k (3x^3 + 8x - 2) = 12x^3 + 4 (8x) + 4(-2)[/tex]

       Multiply 8 by 4.

             [tex]k (3x^3 + 8x - 2) = 12x^3 + 32x + 4(-2)[/tex]

      Multiply  4 by -2.

              [tex]k (3x^3 + 8x - 2) = 12x^3 + 32x - 8[/tex]