Respuesta :

Answer:

∠1 → 108

∠2 → 72

Step-by-step explanation:

Supplementary angles add up to a total of 180° (two angles is a pair). So:

∠1+∠2=180°

∠1 → supplement

∠2 → 36 less than the supplement

Create an equation, using x as angle 1 and y as angle 2:

[tex]x+y=180[/tex]

Insert the given values:

[tex]x+(x-36)=180[/tex]

Solve for the value of x. Simplify parentheses:

[tex]x+x-36=180[/tex]

Simplify addition:

[tex]2x-36=180[/tex]

Add 36 to both sides:

[tex]2x-36+36=180+36\\\\2x=216[/tex]

Isolate the variable. Divide both sides by 2:

[tex]\frac{2x}{2}=\frac{216}{2}\\\\ x=108[/tex]

The value of x is 108. Insert this into the equation above:

[tex]x+y=180\\\\108+y=180[/tex]

Solve for y. Subtract 108 from both sides:

[tex]108-108+y=180-108\\\\y=72[/tex]

The value of y is 72.

Therefore:

∠1 → 108

∠2 → 72

:Done

*Check:

Insert the values into an equation set to 180 to determine if true:

[tex]108+72=180\\\\180=180[/tex]

Subtract 108 by 72 to see if the difference is 36:

[tex]108-72=36\\36=36[/tex]

The given values are true.

Supplementary angles add up to [tex]180^o[/tex]

The angles are 72 and 108

Let the angles be x and y.

Such that:

[tex]y = x - 36[/tex]

So, we have:

[tex]x + y = 180[/tex] --- sum of supplementary angles

Substitute [tex]y = x - 36[/tex]

[tex]x + x - 36 = 180[/tex]

[tex]2x - 36 = 180[/tex]

Collect like terms

[tex]2x = 36 + 180[/tex]

[tex]2x = 216[/tex]

Divide by 2

[tex]x = 108[/tex]

Recall that:

[tex]y = x - 36[/tex]

[tex]y = 108 - 36[/tex]

[tex]y = 72[/tex]

Hence, the angles are 72 and 108

See attachment for the illustration of the angles

Read more about supplementary angles at:

https://brainly.com/question/18164299

Ver imagen MrRoyal