Respuesta :
Answer:
[tex](a) 189.23 N[/tex], [tex](b) 47.31 N[/tex] and [tex](c) 141.92 N[/tex].
Explanation:
Three balls are shown in figure having charge [tex]q=1.45 \mu C[/tex]. The middle ball, [tex]B[/tex], is positively charged having charge [tex]+q[/tex], and the remaining two outside balls, [tex]A[/tex] and [tex]C[/tex], are negatively charged having charged [tex]-q[/tex] as shown.
[tex]AC=20 cm[/tex] and [tex]AB=BC=10[/tex] cm as B is the mid-point of AC.
Let [tex]d_1=AC=20\times 10^{-3}m[/tex] and [tex]d_2=AB=BC=10\times 10^{-3}m[/tex]
From Coulomb's law, the magnitude of the force, [tex]F[/tex], between two point charges having magnitudes [tex]q_1 \& q_2[/tex], separated by distance, [tex]d[/tex], is
[tex]F=\frac {1}{4\pi\epsilon_0}\frac {q_1q_2}{d^2}\;\cdots (i)[/tex]
where, [tex]\epsilon_0[/tex] is the permittivity of free space and
[tex]\frac {1}{4\pi\epsilon_0}=9\times 10^9[/tex] in SI units.
This force is repulsive for the same nature of charges and attractive for the different nature of charges.
Now, Using equations(i),
(a) The magnitude of attraction force between balls A and B is
[tex]F_{AB}=F_{BC}= \frac {1}{4\pi\epsilon_0}\frac {qq}{(d_2)^2}[/tex]
[tex]\Rightarrow F_{AB}= 9\times 10^9}\frac {1.45\times 10^{-6}\times1.45\times 10^{-6}}{\left(10\times 10^{-3}\right)^2}[/tex]
[tex]\Rightarrow F_{AB}=189.23 N[/tex]
(a) The magnitude of the repulsive force between balls A and C is
[tex]F_{AC}= \frac {1}{4\pi\epsilon_0}\frac {qq}{(d_1)^2}[/tex]
[tex]\Rightarrow F_{AC}= 9\times 10^9}\frac {1.45\times 10^{-6}\times1.45\times 10^{-6}}{\left(20\times 10^{-3}\right)^2}[/tex]
[tex]\Rightarrow F_{AC}=47.31 N[/tex]
(c) The magnitude of the net force, [tex]F_{net}[/tex], on the outside of the ball is,
[tex]F_{net}=189.23-47.31 N[/tex]
[tex]\Rightarrow F_{net}=141.92 N[/tex]
