The function h (x) = StartFraction 2 (x + 3) Over x EndFraction is a result of the composition (g compose f) (x). If g (x) = StartFraction 2 over x EndFraction, what is f(x)?

Respuesta :

Answer:

[tex]f(x) = \frac{2x}{2x + 3}[/tex]

Step-by-step explanation:

Given

[tex]h(x) = \frac{2x + 3}{x}[/tex]

[tex]g(x) = \frac{2}{x}[/tex]

[tex]g(f(x)) = h(x)[/tex]

Required

Find f(x)

[tex]g(x) = \frac{2}{x}[/tex]

Substitute x for f(x)

[tex]g(f(x)) = \frac{2}{f(x)}[/tex]

Recall that

[tex]g(f(x)) = h(x)[/tex]

This gives

[tex]\frac{2}{f(x)} = \frac{2x + 3}{x}[/tex]

Cross Multiply

[tex]f(x) * (2x + 3) = 2 * x[/tex]

[tex]f(x) * (2x + 3) = 2 x[/tex]

Make f(x) the subject of formula

[tex]f(x) = \frac{2x}{2x + 3}[/tex]

Answer:

x/x+3

Step-by-step explanation: