Respuesta :

Answer: C=(44,29).

Step-by-step explanation:

The given points are A = (-4 , -7)  and B = (12 , 5).

It is given that Point B is 1/3 of the way from A to C.

AB:AC=1:3

AB:BC=AB:(AC-AB)=1:(3-1)=1:2

It means point B divides the line segment AC in 1:2.

Let coordinates of C are (a,b).

Section formula: If a point divides a line segment in m:n, then

[tex]Point=\left(\dfrac{mx_2+nx_1}{m+n},\dfrac{my_2+ny_1}{m+n}\right)[/tex]

Using section formula, we get

[tex]B=\left(\dfrac{1(a)+2(-4)}{1+2},\dfrac{1(b)+2(-7)}{1+2}\right)[/tex]

[tex](12,5)=\left(\dfrac{a-8}{3},\dfrac{b-14}{3}\right)[/tex]

On comparing both sides, we get

[tex]\dfrac{a-8}{3}=12[/tex]

[tex]a-8=36[/tex]

[tex]a=36+8[/tex]

[tex]a=44[/tex]

[tex]\dfrac{b-14}{3}=5[/tex]

[tex]b-14=15[/tex]

[tex]b=15+14[/tex]

[tex]b=29[/tex]

Therefore, the coordinates of C are (44,29).