Answer:
361 K
Explanation:
From the tables:
[tex]P_r=4.3/6.14=0.7,T_c=308.3\ K, R=0.2193\ kJ/kgK\\\\Volume (V)=0.045m^3, mass(m)=2kg\\\\v=V/m=0.045/2=0.0225\ m^3/kg[/tex]
Given that:
[tex]v=\frac{ZRT}{P}[/tex]
From the charts, at [tex]P_r=0.7,Z_g=0.59,T_r=0.94[/tex]
[tex]v_g=\frac{0.59*0.3193*0.94*308.3}{4300}=0.0127\ m^3/kg\ which\ is\ small\\ \\At\ T_r=1,Z=0.7,v=\frac{0.7*0.3193*1*308.3}{4300}=0.016\ m^3/kg\\\\At\ T_r=1.2,Z=0.86,v=\frac{0.86*0.3193*1.2*308.3}{4300}=0.0236\ m^3/kg[/tex]
Interpolating, we get [tex]T_r=1.17[/tex], T = 361 K