What is the midpoint of the line segment? Drag the coordinates to the boxes to correctly match the endpoints and midpoint.

Hey there! I'm happy to help!
LINE SEGMENT 1
To find the x value of the midpoint, you add the x values and divide by 2.
-1/3+4/3=1
1/2=1/2
For the y value, you add the y values and divide by 2.
7/5+5/2= 3 9/10
3 9/10÷2=1 19/20 or 39/20.
So, our midpoint is (1/2, 39/20).
LINE SEGMENT 2
X-Values
5+(-1)=5-1=4
4/2=2
Y-Values
√3+5√3=6√3
6√3÷2=3√3
So, our midpoint is (2, 3√3).
Have a wonderful day! :D
The midpoint of a line segment divides the line segment into 2.
[tex]\mathbf{(a)\ (-\frac 13, \frac 75)\ and\ (\frac 43, \frac 52)}[/tex]
The midpoint is calculated as follows:
[tex]\mathbf{(x,y) = (\frac{-1/3 + 4/3}{2}, \frac {7/5 + 5/2}{2})}[/tex]
[tex]\mathbf{(x,y) = (\frac{3/3}{2}, \frac {39/10}{2})}[/tex]
[tex]\mathbf{(x,y) = (\frac{1}{2}, \frac {39}{20})}[/tex]
Hence, the midpoint of [tex]\mathbf{(-\frac 13, \frac 75)\ and\ (\frac 43, \frac 52)}[/tex] is [tex]\mathbf{(\frac{1}{2}, \frac {39}{20})}[/tex]
[tex]\mathbf{(b)\ (5 \sqrt 3)\ and\ (-1, 5\sqrt 3)}[/tex]
The midpoint is calculated as follows:
[tex]\mathbf{(x,y) = (\frac{5 - 1}{2}, \frac {\sqrt 3 + 5\sqrt 3}{2})}[/tex]
[tex]\mathbf{(x,y) = (\frac{4}{2}, \frac {6\sqrt 3}{2})}[/tex]
[tex]\mathbf{(x,y) = (2, 3\sqrt 3)}[/tex]
Hence, the midpoint of [tex]\mathbf{(5 \sqrt 3)\ and\ (-1, 5\sqrt 3)}[/tex] is [tex]\mathbf{(2, 3\sqrt 3)}[/tex]
Read more about midpoints at:
https://brainly.com/question/13133371