Answer:
a = 0.161 [tex]$m/s^2$[/tex]
Explanation:
Given :
[tex]$ d_{total}[/tex] = 10 km = 10000 m
[tex]$t_{total} $[/tex] = 27 min 43.6 s
= 1663.6 s
[tex]$d_1$[/tex] = 7.85 km = 7850 m
[tex]$t_1$[/tex] = 25 min = 1500 s
[tex]$t_2$[/tex] = 60 s
Now the initial speed for the distance of 7.85 km is
[tex]$ v_1 = \frac{d_1}{t_1} = \frac{7850}{1500}$[/tex] = 5.23 m/s
The velocity after 60 s after the distance of 7.85 kn is
[tex]$v_2 = v_1 + at_2$[/tex]
= 5.23 + a(60)
The distance traveled for 60 s after the distance of 7.85 km is
[tex]$d_2 = v_1t_2+\frac{1}{2}at_2^2$[/tex]
[tex]$d_2 = (5.23)(60)+\frac{1}{2}a(60)^2$[/tex]
= 313.8 + a(1800)
The time taken for the last journey where the speed is again uniform is
[tex]$t_3 = t_{total}-t_1-t_2 $[/tex]
= 1663.6 - 1500 - 60
= 103.6 s
Therefore, the distance traveled for the time [tex]$t_3$[/tex] is
[tex]$ d_3 = v_2 t_3$[/tex]
= (5.23+60a)(103.6)
= 541.8 + 6216 a
The total distance traveled,
[tex]$ d_{total}= d_1 + d_2 + d_3$[/tex]
Now substituting the values in the above equation for the acceleration a is
10000 = 7850 + (313.6 + 1800a) + (541.8 + 6216a)
10000 = 8706.5 + 8016a
1294.4 = 8016a
a = 0.161 [tex]$m/s^2$[/tex]