Respuesta :

Answer:

145 kernels

Step-by-step explanation:

The dimensions of the box are L= 5cm W=2.5cm H= 2.5.

Size of a kernal is 0.6 cm

We need to find number of kernels that could fit inside of the box. Let n be such kernals. So,

[tex]n=\dfrac{\text{volume of box}}{\text{volume of one kernel}}[/tex]

Kernal is in the shape of cube

So,

[tex]n=\dfrac{\text{volume of cuboid}}{\text{volume of one cube}}\\\\n=\dfrac{LWH}{a^3}\\\\n=\dfrac{5\times 2.5\times 2.5}{(0.6)^3}\\\\n=144.67\\\\\text{or}\\\\n=145\ \text{kernels}[/tex]

Hence, 145 kernels could fit inside of the box.