A train 4.00 3 102 m long is moving on a straight track with a speed of 82.4 km/h. The engineer applies the brakes at a crossing, and later the last car passes the crossing with a speed of 16.4 km/h. Assuming constant acceleration, determine how long the train blocked the crossing. Disregard the width of the crossing.

Respuesta :

Answer:

The  value  is  [tex]t  =29.2  \  s [/tex]

Explanation:

From the question we are told that

Generally the average velocity of the train is mathematically represented as

          [tex]v  =  \frac{u +  v}{2}[/tex]

substituting  82.4 km/h for  u and   16.4 km/h. for  v

       [tex]v  =  \frac{82.4 + 16.4}{2}[/tex]

          [tex]v  =  49.4 \  km/h[/tex]

Generally the time taken is mathematically represented as

     [tex]t  =  \frac{ L}{v}[/tex]

substituting   49.4 \  km/h for  v and  [tex]4.00 * 10^2 \  m  =  0.400 \  km[/tex]

         [tex]t  =  \frac{ 0.400}{49.4}[/tex]

          [tex]t  = 0.00809 \  h [/tex]

converting to seconds

         [tex]t  = 0.00809 * 3600  [/tex]

          [tex]t  =29.2  \  s [/tex]