Respuesta :

Answer:

[tex]v = 250[1 - {e^{-6000t}}][/tex] mV

Explanation:

The voltage across a capacitor at a time t, is given by:

[tex]v(t) = \frac{1}{C} \int\limits^{t}_{t_0} {i(t)} \, dt + v(t_0)[/tex]                 ----------------(i)

Where;

v(t) = voltage at time t

[tex]t_{0}[/tex] = initial time

C = capacitance of the capacitor

i(t) = current through the capacitor at time t

v(t₀) = voltage at initial time.

From the question:

C = 2μF = 2 x 10⁻⁶F

i(t) = 3[tex]e^{-6000t}[/tex] mA

t₀ = 0

v(t₀ = 0) = 0

Substitute these values into equation (i) as follows;

[tex]v = \frac{1}{2*10^{-6}} \int\limits^{t}_{0} {3e^{-6000t}} \, dt + v(0)[/tex]    

[tex]v = \frac{1}{2*10^{-6}} \int\limits^{t}_{0} {3e^{-6000t}} \, dt + 0[/tex]

[tex]v = \frac{1}{2*10^{-6}} \int\limits^{t}_{0} {3e^{-6000t}} \, dt[/tex]            

[tex]v = \frac{3}{2*10^{-6}} \int\limits^{t}_{0} {e^{-6000t}} \, dt[/tex]             [Solve the integral]

[tex]v = \frac{3}{2*10^{-6}*(-6000)} {e^{-6000t}}|_0^t[/tex]

[tex]v = \frac{-3000}{12} {e^{-6000t}}|_0^t[/tex]

[tex]v = -250 {e^{-6000t}}|_0^t[/tex]

[tex]v = -250 {e^{-6000t}} - [-250 {e^{-6000(0)}][/tex]

[tex]v = -250 {e^{-6000t}} - [-250][/tex]

[tex]v = -250 {e^{-6000t}} + 250[/tex]

[tex]v = 250 -250 {e^{-6000t}}[/tex]

[tex]v = 250[1 - {e^{-6000t}}][/tex]

Therefore, the voltage across the capacitor is [tex]v = 250[1 - {e^{-6000t}}][/tex] mV