What are the minimum and maximum values of x, for which x3 + x2 – 6x ≥ 0? minimum = –3, maximum = 0 minimum = 0, maximum = 2 minimum = –3, no maximum minimum = 2, no maximum Please answer quickly

Respuesta :

Answer: Option C.

Step-by-step explanation:

The given inequality is

[tex]x^3+x^2-6x\geq 0[/tex]

Taking x common, we get

[tex]x(x^2+x-6)\geq 0[/tex]

Splitting the middle term, we get

[tex]x(x^2+3x-2x-6)\geq 0[/tex]

[tex]x(x(x+3)-2(x+3))\geq 0[/tex]

[tex]x(x+3)(x-2)\geq 0[/tex]

Related equation is

[tex]x(x+3)(x-2)=0[/tex]

[tex]x=-3,0,2[/tex]

These three points divide the number line in 4 parts.

Interval       Sign of [tex]x(x+3)(x-2)\geq 0[/tex]      Statement

(-∞,-3)              [tex](-)(-)(-)=(-)[/tex]                           False      

(-3,0)              [tex](-)(+)(-)=(+)[/tex]                            True  

(0,2)              [tex](+)(+)(-)=(-)[/tex]                              False      

(2,∞)              [tex](+)(+)(+)=(+)[/tex]                              True  

So, the solution set is (-3,0) ∪ (2,∞).

Thus, minimum value is –3 and no maximum value.

Therefore, the correct option is C.

Answer:

minimum = –3, no maximum

Step-by-step explanation:

The other guy here was completely correct, but just in case it assures anyone's doubts:

Ver imagen kingdukkwashere