Respuesta :

Answer:

[tex]y-x=3[/tex]

Step-by-step explanation:

Subtract  y  from both sides of the equation.

[tex]x = 11-y[/tex]

[tex]5x+3y=41[/tex]

Replace all occurrences of x  in [tex]5x+3y=41[/tex]  with  11 -y

[tex]x=11-y[/tex]

[tex]5(11-y)+3y=41[/tex]

simplify [tex]5(11-y)+3y=41[/tex]

[tex]x=11-y[/tex]

[tex]55-5y+3y=41[/tex]

add -5y and 3y

[tex]x= 11-y[/tex]

[tex]55- 2y=41[/tex]

Solve for  y  in the second equation.

Move all terms not containing  y  to the right side of the equation.

[tex]x=11-y[/tex]

[tex]-2y=-14[/tex]

Divide each term by  − 2  and simplify.

[tex]x=11-y[/tex]

[tex]y=7[/tex]

Replace all occurrences of  y  in  x

[tex]x=11-(7)[/tex]

[tex]y=7[/tex]

simplify.

[tex]x=4[/tex]

[tex]y=7[/tex]

Replace the variable  x  with  4  in the expression.

[tex]y-(4)[/tex]

Replace the variable  y  with  7  in the expression.

[tex](7) - (4)[/tex]

Multiply  − 1  by  4 .

[tex]7-4[/tex]

Subtract  4  from  7 .

[tex]3[/tex]

Answer:y-x=3

Step-by-step explanation: substitution method

5x+3y=41........ equation 1

x+y=11 .........equation 2

Since we are given two different equations in terms of two different linear equations, let us try to solve them using the concept of method of substitution:

we find that y=11-x

we will substitue y into equation 1

5x+3(11-x) = 41

5x+33-3x=41

5x-3x=41-33

2x=8

2x/2=8/2

x=4

x+y=11

then you substitute

4+y=11

y=11-4

y=7

y-x

7-4=3