Respuesta :
Answer:
[tex]y-x=3[/tex]
Step-by-step explanation:
Subtract y from both sides of the equation.
[tex]x = 11-y[/tex]
[tex]5x+3y=41[/tex]
Replace all occurrences of x in [tex]5x+3y=41[/tex] with 11 -y
[tex]x=11-y[/tex]
[tex]5(11-y)+3y=41[/tex]
simplify [tex]5(11-y)+3y=41[/tex]
[tex]x=11-y[/tex]
[tex]55-5y+3y=41[/tex]
add -5y and 3y
[tex]x= 11-y[/tex]
[tex]55- 2y=41[/tex]
Solve for y in the second equation.
Move all terms not containing y to the right side of the equation.
[tex]x=11-y[/tex]
[tex]-2y=-14[/tex]
Divide each term by − 2 and simplify.
[tex]x=11-y[/tex]
[tex]y=7[/tex]
Replace all occurrences of y in x
[tex]x=11-(7)[/tex]
[tex]y=7[/tex]
simplify.
[tex]x=4[/tex]
[tex]y=7[/tex]
Replace the variable x with 4 in the expression.
[tex]y-(4)[/tex]
Replace the variable y with 7 in the expression.
[tex](7) - (4)[/tex]
Multiply − 1 by 4 .
[tex]7-4[/tex]
Subtract 4 from 7 .
[tex]3[/tex]
Answer:y-x=3
Step-by-step explanation: substitution method
5x+3y=41........ equation 1
x+y=11 .........equation 2
Since we are given two different equations in terms of two different linear equations, let us try to solve them using the concept of method of substitution:
we find that y=11-x
we will substitue y into equation 1
5x+3(11-x) = 41
5x+33-3x=41
5x-3x=41-33
2x=8
2x/2=8/2
x=4
x+y=11
then you substitute
4+y=11
y=11-4
y=7
y-x
7-4=3