Correct Question:
Type the correct answer in the box. Use numerals instead of words. Consider this expression. [tex]\sqrt{a^2} - 7 + |b|[/tex] When a = 2 and b = -4, the value of the expression is
Answer:
[tex]\sqrt{a^2} - 7 + |b| = -1[/tex]
Step-by-step explanation:
Given
[tex]a=2[/tex]
[tex]b = -4[/tex]
Required
Determine [tex]\sqrt{a^2} - 7 + |b|[/tex]
To solve this, we simply substitute the values of a in the given expression
[tex]\sqrt{a^2} - 7 + |b|[/tex]
[tex]\sqrt{a^2} - 7 + |b| = \sqrt{2^2} - 7 + |-4|[/tex]
Express 2² as 4
[tex]\sqrt{a^2} - 7 + |b| = \sqrt{4} - 7 + |-4|[/tex]
Express square root of 4 as 2
[tex]\sqrt{a^2} - 7 + |b| = 2 - 7 + |-4|[/tex]
[tex]|-4| = 4[/tex]
So, we have
[tex]\sqrt{a^2} - 7 + |b| = 2 - 7 + 4[/tex]
[tex]\sqrt{a^2} - 7 + |b| = -1[/tex]
Hence, the result of the expression is -1