Respuesta :
Answer:
[tex]x=3\text{ or } x=-3[/tex]
Step-by-step explanation:
So we have the equation:
[tex]|6x|+3=21[/tex]
First, subtract 3 from both sides:
[tex]|6x|=18[/tex]
Definition of absolute value:
[tex]6x=18\text{ or } 6x=-18[/tex]
Divide both sides by 6 for both equations:
[tex]x=3\text{ or } x=-3[/tex]
And we're done!
Answer:
[tex]x=3[/tex] and [tex]x=-3[/tex]
Step-by-step explanation:
[tex]\left|6x\right|+3=21\\[/tex]
Subtract 3 to both sides:
[tex]\left|6x\right|+3-3=21-3\\|6x|=18[/tex]
Apply the absolute rule: If |a| = b and b > 0, a = -b or a = b.
Thus,
Case 1:
[tex]6x=18[/tex]
Divide both sides by 6:
[tex]x=3[/tex]
Case 2:
[tex]6x=-18[/tex]
Divide both sides by 6:
[tex]x=-3[/tex]