Respuesta :

Answer:

[tex]x=3\text{ or } x=-3[/tex]

Step-by-step explanation:

So we have the equation:

[tex]|6x|+3=21[/tex]

First, subtract 3 from both sides:

[tex]|6x|=18[/tex]

Definition of absolute value:

[tex]6x=18\text{ or } 6x=-18[/tex]

Divide both sides by 6 for both equations:

[tex]x=3\text{ or } x=-3[/tex]

And we're done!

Answer:

[tex]x=3[/tex] and [tex]x=-3[/tex]

Step-by-step explanation:

[tex]\left|6x\right|+3=21\\[/tex]

Subtract 3 to both sides:

[tex]\left|6x\right|+3-3=21-3\\|6x|=18[/tex]

Apply the absolute rule: If |a| = b and b > 0, a = -b or a = b.

Thus,

Case 1:

[tex]6x=18[/tex]

Divide both sides by 6:

[tex]x=3[/tex]

Case 2:

[tex]6x=-18[/tex]

Divide both sides by 6:

[tex]x=-3[/tex]