Respuesta :

Answer:

The answer is

[tex]x = - 5 + 8 \: i \: \: \: \: or \: \: \: \: x = - 5 - 8 \: i \\ [/tex]

Step-by-step explanation:

x² + 10x + 89 = 0

Using the quadratic formula

[tex]x = \frac{ - b\pm \sqrt{ {b}^{2} - 4ac} }{2a} [/tex]

From the question

a = 1 , b = 10 , c = 89

Substitute the values into the above formula and solve

We have

[tex]x = \frac{ - 10\pm \sqrt{ {10}^{2} - 4(1)(89)} }{2(1)} \\ = \frac{ - 10\pm \sqrt{100 - 356} }{2} \\ = \frac{ - 10\pm \sqrt{ - 256} }{2} \\ = \frac{10\pm 16 \: i}{2} [/tex]

Separate the real and imaginary part

That's

[tex]x = - \frac{10}{2} \pm \frac{16}{2} \: i \\ x = - 5\pm8 \: i[/tex]

We have the final answer as

[tex]x = - 5 + 8 \: i \: \: \: \: or \: \: \: \: x = - 5 - 8 \: i \\ [/tex]

Hope this helps you