Respuesta :

Answer:

[tex]a=10[/tex]

Step-by-step explanation:

Equation 1:  [tex]2a+3b=-1[/tex]

Equation 2: [tex]4a+2b=26[/tex]

Subtract 3b from both sides in Equation 1:

[tex]2a=-1-3b[/tex]

Divide both sides by 2:

[tex]\frac{2a}{2}=-\frac{1-3b}{2}[/tex]

[tex]a=\frac{-1-3b}{2}[/tex]

Substitute this into Equation 2:

[tex]4* \frac{-1-3b}{2}+2b=26[/tex]

[tex]2\left(-3b-1\right)+2b=26[/tex]

[tex]-6b-2+2b=26[/tex]

[tex]-4b-2=26[/tex]

Add 2 to both sides:

[tex]-4b=28[/tex]

Divide both sides by -4:

[tex]\frac{-4b}{-4}=\frac{28}{-4}[/tex]

[tex]b=-7[/tex]

We know that [tex]a=\frac{-1-3b}{2}[/tex]. Plug in b = -7 value:

[tex]a=\frac{-1-3\left(-7\right)}{2}[/tex]

[tex]a=\frac{-1+3\cdot \:7}{2}[/tex]

[tex]a=\frac{20}{2}[/tex]

[tex]a=10[/tex]