Answer:
[tex]\Rightarrow L=70 .03472 cm[/tex]
Explanation:
For convenience, let's represent the thermal expansion coefficient by [tex]\alpha[/tex], i.e. [tex]????=\alpha[/tex].
Given that, for steel [tex]\alpha =1.24\times 10^{-5}[/tex] °[tex]C^{-1}[/tex],
initial length, [tex]L_0=70 cm[/tex], initial temperature, [tex]T_0=70[/tex] °[tex]C[/tex], and the final temperature, [tex]T=110[/tex] °[tex]C[/tex].
Let the length of the rod at [tex]T=110[/tex] °[tex]C[/tex] be [tex]L[/tex].
Now, change in length, [tex]\Delta L=\alpha L_0 \Delta T[/tex]
[tex]\Rightarrow \Delta L=\alpha L_0 (T-T_0)[/tex]
[tex]\Rightarrow L-L_0=1.24\times 10^{-5}\times 70 (110-70)[/tex]
[tex]\Rightarrow L-70=1.24\times 10^{-5}\times 70 \times 40[/tex]
[tex]\Rightarrow L=70 + 0.03472 cm[/tex]
[tex]\Rightarrow L=70 .03472 cm[/tex]
Hence, the length of the rod at [tex]T=110[/tex] °[tex]C[/tex] be [tex]70.03472 cm[/tex].