Answer:
The correct answer to the following question will be "12.0 N/C".
Explanation:
As we know,
Charged from the inside of the sphere throughout consideration of the electrical field or inside sphere.
⇒ [tex]E_0=\frac{KQ}{r_0^{2}}[/tex]
Now,
⇒ [tex]Q=\frac{E_0r_0^{2}}{k}[/tex]
On putting the values in the above formula, we get
⇒ [tex]=\frac{6.00\times 80.0}{9\times 10^9}(\frac{10^{-2}}{2})^2[/tex]
⇒ [tex]=4.267\times 10^{-10} \ C[/tex]
Electric field within the sphere at that same distance of 20.0 cm from either the core.
⇒ [tex]E_i=\frac{kQr_i}{R^3}[/tex]
On putting the values, we get
⇒ [tex]=\frac{(9\times 10^9)(4.267\times 10^{-10})(20.0)}{(80.0)^3(\frac{10^{-2}}{1} )^2}[/tex]
⇒ [tex]=12.0 \ N/C[/tex]