Respuesta :
Using digit concepts, it is found that, in expanded form:
[tex]90.125 = 9 \times 10^1 + 0 \times 10^0 + 1 \times 10^{-1} + 2 \times 10^{-2} + 5 \times 10^{-3}[/tex]
--------------------
- Each number can be divided into an integer part and a decimal part. For 90.125, the integer part is 90 and the decimal part is 0.125.
- In the integer part, starting from the last digit, each is multiplied by the "next" power of 10, thus:
[tex]90 = 0 \times 10^{0} + 9 \times 10^{1} = 9 \times 10^{1} + 0 \times 10^{0}[/tex]
- For the decimal part, starting from the first decimal digit, the same logic applies, using negative powers of 10 starting at -1, thus:
[tex].125 = 1 \times 10^{-1} + 2 \times 10^{-2} + 5 \times 10^{-3}[/tex]
Combining the integer and decimal parts, we get that the number in expanded form is:
[tex]90.125 = 9 \times 10^1 + 0 \times 10^0 + 1 \times 10^{-1} + 2 \times 10^{-2} + 5 \times 10^{-3}[/tex]
A similar problem is given at https://brainly.com/question/17574571