Geometric sequences

*Each number is 4 less than 3 times the previous numbers*

A. Starting with the number 10, build a sequence of 5 numbers.

B. Starting with the number 1, build a sequence of 5 numbers.

C. Select a different starting number and build a sequence of 5 numbers.

Respuesta :

Formula for the term of a geometric sequences has been defined as,

"Each number is 4 less than 3 times the previous numbers"

Therefore, recursive formula will be,

[tex]T_n=3(T_{n-1})-4[/tex]

Now we will use this formula to build the sequence,

A). If [tex]T_1=10[/tex],

    Then [tex]T_2=3(10)-4=26[/tex]

     [tex]T_3=3(26)-4=74[/tex]

     [tex]T_4=3(74)-4=218[/tex]

     [tex]T_5=3(218)-4=650[/tex]

     Therefore, the sequence will be,

      [tex]10,26,74,218,650[/tex]

B). If [tex]T_1=1[/tex],

    Then [tex]T_2=3(1)-4=-1[/tex]

    [tex]T_3=3(-1)-4=-7[/tex]

    [tex]T_4=3(-7)-4=-25[/tex]

    [tex]T_5=3(-25)-4=-79[/tex]

    Therefore, the sequence will be,

    [tex]1,-1,-7,-25,-79[/tex]

C). If, [tex]T_1=5[/tex],

    Then, [tex]T_2=3(5)-4=11[/tex]

     [tex]T_3=3(11)-4=29[/tex]

     [tex]T_4=3(29)-4=83[/tex]

     [tex]T_5=3(83)-4=245[/tex]

    Therefore, the sequence will be,

     [tex]5,11,29,83,245[/tex]

     Learn more,

     https://brainly.com/question/11266123