Answer:
[tex]A = \{x|x\ E\ n^2 + 3, n \geq 0 \}[/tex]
Step-by-step explanation:
Required
Represent set A using set-builder notation
First, we need to understand the general rule:
[tex]0^2 + 3 = 0 + 3 = 3[/tex]
[tex]1^2 + 3 = 1 + 3 = 4[/tex]
[tex]2^2 + 3 = 4 + 3 = 7[/tex]
[tex]5^2 + 3= 25 + 3 = 28[/tex]
-----
--
--
In general, we can write it as:
[tex]n^2 + 3[/tex]
Next, is to determine the values of n;
Since [tex]n^2[/tex] is a perfect square of [tex]n[/tex], then, the values of n is 0,1,2,3,.....
Hence; Set A can be represented as: [tex]A = \{x|x\ E\ n^2 + 3, n \geq 0 \}[/tex]