Given :
Line WX bisects YZ at point W.
[tex]WZ=9\dfrac{5}{8}=\dfrac{77}{5}[/tex] .
To Find :
The length of YZ .
Solution :
Since , the point W bisect YZ .
So , it cuts YZ into two equal parts i.e YW and WZ .
Therefore , YW = WZ
Also , YZ = YW+WZ = 2WZ
[tex]YZ = 2\times \dfrac{77}{5}\\\\YZ=\dfrac{154}{5}\\\\YZ=30\dfrac{4}{5}[/tex]
Hence , this is the required solution .