URGENT HELP ME PLEASE


1) Develop the LOGARITHM PROPERTIES AND SOLVE THE EQUATIONS:


a-) log3 (81.3) =

b-) log5 (625.25) =

c-) log2 64/8 =

d-) log464/16 =

e-) log6 (364) =

f-) log (1003) =

Respuesta :

Answer:

(a)[tex]\log_3(\dfrac{81}{3})=3[/tex]

(b)[tex]\log_5(\dfrac{625}{25})=2[/tex]

(c)[tex]\log_2(\dfrac{64}{8})=3[/tex]

(d)[tex]\log_4(\dfrac{64}{16})=1[/tex]

(e)[tex]\log_6(36^4)=8[/tex]

(f)[tex]\log(100^3)=6[/tex]

Step-by-step explanation:

Let as consider the given equations are [tex]\log_3(\dfrac{81}{3})=?,\log_5(\dfrac{625}{25})=?,\log_2(\dfrac{64}{8})=?,\log_4(\dfrac{64}{16})=?,\log_6(36^4)=?,\log(100^3)=?[/tex].

(a)

[tex]\log_3(\dfrac{81}{3})=\log_3(27)[/tex]

[tex]\log_3(\dfrac{81}{3})=\log_3(3^3)[/tex]

[tex]\log_3(\dfrac{81}{3})=3[/tex]        [tex][\because \log_aa^x=x][/tex]

(b)

[tex]\log_5(\dfrac{625}{25})=\log_5(25)[/tex]

[tex]\log_5(\dfrac{625}{25})=\log_5(5^2)[/tex]

[tex]\log_5(\dfrac{625}{25})=2[/tex]        [tex][\because \log_aa^x=x][/tex]

(c)

[tex]\log_2(\dfrac{64}{8})=\log_2(8)[/tex]

[tex]\log_2(\dfrac{64}{8})=\log_2(2^3)[/tex]

[tex]\log_2(\dfrac{64}{8})=3[/tex]        [tex][\because \log_aa^x=x][/tex]

(d)

[tex]\log_4(\dfrac{64}{16})=\log_4(4)[/tex]

[tex]\log_4(\dfrac{64}{16})=1[/tex]        [tex][\because \log_aa^x=x][/tex]

(e)

[tex]\log_6(36^4)=\log_6((6^2)^4)[/tex]

[tex]\log_6(36^4)=\log_6(6^8)[/tex]

[tex]\log_6(36^4)=8[/tex]            [tex][\because \log_aa^x=x][/tex]

(f)

[tex]\log(100^3)=\log((10^2)^3)[/tex]

[tex]\log(100^3)=\log(10^6)[/tex]

[tex]\log(100^3)=6[/tex]            [tex][\because \log10^x=x][/tex]