1 point
9) A.SSE.3a: Which factorization can be used to reveal the zeros of the
function below?
f (n) = -12n? – 11n + 15
f (n) = -n(12n + 11) + 15
f (n) = (-4n+ 3) (3n + 5)
f(n) = -(4n + 3) (3n + 5)
f(n) = (4n + 3)(-3n+ 5)

Respuesta :

Answer:

Ste = -12n? – 11n + 15

f (n) = -n(12n + 11) + 15

f (n) = (-4n+ 3) (3n + 5)

f(n) = -(4n + 3) (3n + 5)

f(n) = (4n + 3)(-3n+ 5) = -12n? – 11n + 15

f (n) = -n(12n + 11) + 15

f (n) = (-4n+ 3) (3n + 5)

f(n) = -(4n + 3) (3n + 5)

f(n) = (4n + 3)(-3n+ 5) = -12n? – 11n + 15

f (n) = -n(12n + 11) + 15

f (n) = (-4n+ 3) (3n + 5)

f(n) = -(4n + 3) (3n + 5)

f(n) = (4n + 3)(-3n+ 5) = -12n? – 11n + 15

f (n) = -n(12n + 11) + 15

f (n) = (-4n+ 3) (3n + 5)

f(n) = -(4n + 3) (3n + 5)

f(n) = (4n + 3)(-3n+ 5) = -12n? – 11n + 15

f (n) = -n(12n + 11) + 15

f (n) = (-4n+ 3) (3n + 5)

f(n) = -(4n + 3) (3n + 5)

f(n) = (4n + 3)(-3n+ 5) = -12n? – 11n + 15

f (n) = -n(12n + 11) + 15

f (n) = (-4n+ 3) (3n + 5)

f(n) = -(4n + 3) (3n + 5)

f(n) = (4n + 3)(-3n+ 5)vp-by-step explanation:

To find the zeros of function, write in factors form,

             [tex]f(n)=(-4n+3)(3n+5)[/tex]

Quadratic function :

Given function is,

               [tex]f(n)=-12n^{2} -11n+15[/tex]

We have to break into factor form to find the zeros of function.

                 [tex]f(n)=-12n^{2} -11n+15\\\\f(n)=-12n^{2}-20n+9n+15\\ \\f(n)=-4n(3n+5)+3(3n+5)\\\\f(n)=(-4n+3)(3n+5)[/tex]

Learn more about the zeros of function here:

https://brainly.com/question/446160