Respuesta :
Answer:
Ste = -12n? – 11n + 15
f (n) = -n(12n + 11) + 15
f (n) = (-4n+ 3) (3n + 5)
f(n) = -(4n + 3) (3n + 5)
f(n) = (4n + 3)(-3n+ 5) = -12n? – 11n + 15
f (n) = -n(12n + 11) + 15
f (n) = (-4n+ 3) (3n + 5)
f(n) = -(4n + 3) (3n + 5)
f(n) = (4n + 3)(-3n+ 5) = -12n? – 11n + 15
f (n) = -n(12n + 11) + 15
f (n) = (-4n+ 3) (3n + 5)
f(n) = -(4n + 3) (3n + 5)
f(n) = (4n + 3)(-3n+ 5) = -12n? – 11n + 15
f (n) = -n(12n + 11) + 15
f (n) = (-4n+ 3) (3n + 5)
f(n) = -(4n + 3) (3n + 5)
f(n) = (4n + 3)(-3n+ 5) = -12n? – 11n + 15
f (n) = -n(12n + 11) + 15
f (n) = (-4n+ 3) (3n + 5)
f(n) = -(4n + 3) (3n + 5)
f(n) = (4n + 3)(-3n+ 5) = -12n? – 11n + 15
f (n) = -n(12n + 11) + 15
f (n) = (-4n+ 3) (3n + 5)
f(n) = -(4n + 3) (3n + 5)
f(n) = (4n + 3)(-3n+ 5)vp-by-step explanation:
To find the zeros of function, write in factors form,
[tex]f(n)=(-4n+3)(3n+5)[/tex]
Quadratic function :
Given function is,
[tex]f(n)=-12n^{2} -11n+15[/tex]
We have to break into factor form to find the zeros of function.
[tex]f(n)=-12n^{2} -11n+15\\\\f(n)=-12n^{2}-20n+9n+15\\ \\f(n)=-4n(3n+5)+3(3n+5)\\\\f(n)=(-4n+3)(3n+5)[/tex]
Learn more about the zeros of function here:
https://brainly.com/question/446160