Answer:
4.26
Explanation:
The wavelength λ is given by:
[tex]\lambda=v/f=c/nf\\c=speed\ of\ light=3*10^8m/s,f=frequency=3*10^9Hz,n=permittivity=2.56\\\\\lambda=3*10^8/(2.56*3*10^9)=0.0625\ m\\[/tex]
Phase constant (β) = 2π/λ
βl = 2π/λ × l
l = 2 cm = 0.02 m
βl = 2π/0.0625 × 0.02=2.01 rad = 115.3°
1 rad = 180/π degrees
[tex]Z_L=load\ impedance=37.5+j75\\\\Z_o=characteristic impedance = 75\ ohm\\\\\tilde {Z_L}=Z_L/Z_o=37.5+j75/75=0.5+j[/tex]
[tex]\tilde {Z_{in}}=\frac{\tilde {Z_{L}}+jtan\beta l}{1+j\tilde {Z_{L}}tan\beta l}=\frac{0.5+j+jtan(115.2)}{1+j(0.5+j)tan(115.2)}=0.253-j0.274\\ \\Z_{in}=Z_o\tilde {Z_{in}}=75(0.253-j0.274)=19-j20.5\\\\\Gamma_L=\frac{Z_L-Z_0}{Z_L+Z_o}=\frac{37.5+j75-75}{37.5+j75+75}=0.62\angle 83^o\\\\\Gamma_{in}=\frac{Z_{in}-Z_0}{Z_{in}+Z_o}=\frac{19-j20.5-75}{19-j20.5+75}=0.62\angle -147^o\\\\VSWR=\frac{1+\rho}{1-\rho} =\frac{1+0.62}{1-0.62}=4.26[/tex]