Respuesta :
Answer:
The value is [tex]A = 2.80 *10^{-4} \ m^2[/tex]
Explanation:
From the question we are told that
The operating temperature is [tex]T = 2450 \ K[/tex]
The emissivity is [tex]e = 0.350[/tex]
The power rating is [tex]P = 200 \ W[/tex]
Generally the area is mathematically represented as
[tex]A = \frac{P}{ e * \sigma * T^2}[/tex]
Where [tex]\sigma[/tex] is the Stefan Boltzmann constant with value
[tex]\sigma = 5.67 *10^{-8} \ W/m^2\cdot K^4[/tex]
So
[tex]A = \frac{200}{0.350 * 5.67*10^{-8} * 2450^{4}}[/tex]
[tex]A = 2.80 *10^{-4} \ m^2[/tex]
Using the relation between surface area, temperature and power, the surface area of the filament is [tex] A = 2.80 \times 10^{-4} m^{2} [/tex]
Using the relation, we can obtain the surface area of the filament :
[tex] A = \frac{P}{σ \times \epsilon \times T^{4}[/tex]
T = temperature = 2450 k
P = Power = 200 W
e = Emissivity = 0.350
σ = Boltzmann constant = [tex]5.67 \times 10^{-8}[/tex]
Substituting the values into the relation :
[tex] A = \frac{P}{σ \times \epsilon \times T^{4}}[/tex]
[tex] A = \frac{200}{5.67 \times 10^{-8} \times 0.350 \times 2450^{4}}[/tex]
[tex] A = \frac{200}{715015.47403125} [/tex]
[tex] A = 2.80 \times 10^{-4} [/tex]
Learn more :https://brainly.com/question/15742720