Answer:
[tex]w = \frac{1}{2}(P - 24)[/tex]
[tex]w = 153\ yards[/tex]
Step-by-step explanation:
Given
[tex]P = 24 + 2w[/tex]
Require
Solving (a):
[tex]P = 24 + 2w[/tex]
Subtract 24 from both sides
[tex]P-24 = 24-24 + 2w[/tex]
[tex]P-24 = 2w[/tex]
Divide both sides by 2
[tex]\frac{1}{2}(P - 24) = \frac{2w}{2}[/tex]
[tex]\frac{1}{2}(P - 24) = w[/tex]
[tex]w = \frac{1}{2}(P - 24)[/tex]
Solving (b):
Substitute 330 for P un the expression in (1)
[tex]w = \frac{1}{2}(330 - 24)[/tex]
Evaluate the bracket
[tex]w = \frac{1}{2}(306)[/tex]
[tex]w = 153\ yards[/tex]
Question c; seem irrelevant