Answer: 0.701
Step-by-step explanation:
Formula : [tex]EBM =z_{\alpha/2}\dfrac{\sigma}{\sqrt{n}}[/tex] , where [tex]\alpha=[/tex] significance level , [tex]\sigma =[/tex] Population standard deviation, n= sample size.
As per given, n= 22
[tex]\sigma = 2[/tex]
Critical z- value for 90% confidence level : [tex]z_{\alpha/2}=1.645[/tex]
Then,
[tex]EBM =(1.645)\dfrac{2}{\sqrt{22}}\\\\=(1.645)\dfrac{2}{4.690416}\\\\\approx0.701[/tex]
Hence , error bound (EBM) of the confidence interval with a 90% confidence level= ± 0.701