Compute the matrix of partial derivatives of the following functions.
(a) f(x, y) = (ex, sin(xy)) Drx, y) =
(b) f(x, y, z) = (x-y, y + z) Df(x, y, z) =
(c) f(x, y)-(xy, x - y, xy) Df(x, y) =
(d) rx, y, z) = (x + z, y-42, x-y) Df(x, y, z) =

Respuesta :

For a vector-valued function

[tex]\mathbf f(\mathbf x)=\mathbf f(x_1,x_2,\ldots,x_n)=(f_1(x_1,x_2,\ldots,x_n),\ldots,f_m(x_1,x_2,\ldots,x_n))[/tex]

the matrix of partial derivatives (a.k.a. the Jacobian) is the [tex]m\times n[/tex] matrix in which the [tex](i,j)[/tex]-th entry is the derivative of [tex]f_i[/tex] with respect to [tex]x_j[/tex]:

[tex]D\mathbf f(\mathbf x)=\begin{bmatrix}\dfrac{\partial f_1}{\partial x_1}&\dfrac{\partial f_1}{\partial x_2}&\cdots&\dfrac{\partial f_1}{\partial x_n}\\\dfrac{\partial f_2}{\partial x_1}&\dfrac{\partial f_2}{\partial x_2}&\cdots&\dfrac{\partial f_2}{\partial x_n}\\\vdots&\vdots&\ddots&\vdots\\\dfrac{\partial f_m}{\partial x_1}&\dfrac{\partial f_m}{\partial x_2}&\cdots&\dfrac{\partial f_n}{\partial x_n}\end{bmatrix}[/tex]

So we have

(a)

[tex]D f(x,y)=\begin{bmatrix}\dfrac{\partial(e^x)}{\partial x}&\dfrac{\partial(e^x)}{\partial y}\\\dfrac{\partial(\sin(xy))}{\partial x}&\dfrac{\partial(\sin(xy))}{\partial y}\end{bmatrix}=\begin{bmatrix}e^x&0\\y\cos(xy)&x\cos(xy)\end{bmatrix}[/tex]

(b)

[tex]D f(x,y,z)=\begin{bmatrix}\dfrac{\partial(x-y)}{\partial x}&\dfrac{\partial(x-y)}{\partial y}&\dfrac{\partial(x-y)}{\partial z}\\\dfrac{\partial(y+z)}{\partial x}&\dfrac{\partial(y+z)}{\partial y}&\dfrac{\partial(y+z)}{\partial z}\end{bmatrix}=\begin{bmatrix}1&-1&0\\0&1&1\end{bmatrix}[/tex]

(c)

[tex]Df(x,y)=\begin{bmatrix}y&x\\1&-1\\y&x\end{bmatrix}[/tex]

(d)

[tex]Df(x,y,z)=\begin{bmatrix}1&0&1\\0&1&0\\1&-1&0\end{bmatrix}[/tex]