Respuesta :

Answer:

[tex]A = \frac{2}{3}[/tex]

[tex]B = \frac{4}{3}[/tex]

Step-by-step explanation:

Given

[tex]X(s) = \frac{2s + 4}{s(s +6)}= \frac{A}{s} + \frac{B}{s + 6}[/tex]

Required

Find A and B

The expression can be rewritten as

[tex]\frac{2s + 4}{s(s +6)}= \frac{A}{s} + \frac{B}{s + 6}[/tex]

Take LCM of the right hand side

[tex]\frac{2s + 4}{s(s +6)}= \frac{A(s + 6 )+ Bs}{s(s +6)}[/tex]

Cancel out the denominators

[tex]2s + 4 = A(s + 6) + Bs[/tex]

Open Bracket

[tex]2s + 4 = As + 6A+Bs[/tex]

Reorder

[tex]2s + 4 = As +Bs+ 6A[/tex]

By direct comparison:

[tex]2s = As + Bs[/tex]

[tex]4 = 6A[/tex]

Solving [tex]2s = As + Bs[/tex]

Divide through by s

[tex]2 = A + B[/tex]

Solve for A in [tex]4 = 6A[/tex]

[tex]\frac{4}{6} = A[/tex]

[tex]A = \frac{4}{6}[/tex]

[tex]A = \frac{2}{3}[/tex]

Substitute [tex]\frac{2}{3}[/tex] for A in [tex]2 = A + B[/tex]

[tex]2 = \frac{2}{3} + B[/tex]

[tex]B = 2 - \frac{2}{3}[/tex]

LCM

[tex]B = \frac{6 - 2}{3}[/tex]

[tex]B = \frac{4}{3}[/tex]