Using the mmoles of (35)-2,2,-dibromo-3,4-dimethylpentane calculated earlier and the molecular weight of the product (962 g/mol). Predict the theoretical 1 0096 yield of the product in grams. Round to the hundredths place.

Respuesta :

Answer:

The yield of the product in gram is [tex]\mathsf{{w_P}=0.26 \ gram}[/tex]

Explanation:

Given that:

the molecular mass weight of the product = 96.2 g/mol

the molecular mass of the reagent (3S)-2,2,-dibromo-3,4-dimethylpentane is 257.997 g

given that the millimoles of the reagent = 2,7 millimoles = [tex]2.7 \times 10^{-3} \ moles[/tex]

We know that:

Number of moles = mass/molar mass

Then:

[tex]2.7 \times 10^{-3} = \dfrac{ mass}{257.997}[/tex]

[tex]mass = 2.7 \times 10^{-3} \times 257.997[/tex]

mass = 0.697

Theoretical yield = (number of moles of the product/ number of moles of reactant) × 100

i.e

Theoretical yield = [tex]\dfrac{n_P}{n_R}\times 100\%[/tex]

where;

[tex]n_P = \dfrac{w_P}{m_P}[/tex]    and [tex]n_R = \dfrac{w_R}{m_R}[/tex]

Theoretical yield = [tex]\dfrac{(\dfrac{w_P}{m_P})}{(\dfrac{w_R}{m_R})} \times 100\%[/tex]

Given that the theoretical yield = 100%

Then:

[tex]100\% =\dfrac{(\dfrac{w_P}{m_P})}{(\dfrac{w_R}{m_R})} \times 100\%[/tex]

[tex]\dfrac{w_P}{m_P}=\dfrac{w_R}{m_R}[/tex]

[tex]{w_P}=\dfrac{w_R \times m_P}{m_R}[/tex]

where,

[tex]w_P[/tex] = derived weight of the product

[tex]m_P =[/tex]the molecular mass of the derived product

[tex]m_R =[/tex] the molecular mass of the reagent

[tex]w_R[/tex] = weight in a gram of the reagent

[tex]{w_P}=\dfrac{w_R \times m_P}{m_R}[/tex]

[tex]{w_P}=\dfrac{0.697 \times 96.2}{257.997}[/tex]

[tex]\mathsf{{w_P}=0.26 \ gram}[/tex]